The Future of Transportation

Technology, policy, and transitions
Electric

- All signs point toward battery-electric

- Pace of transition "depends as much on politics as it does on markets" (John Graham, May 2021)
Market Share (Sales)

Top Countries for Plugin Vehicle Share in 1st Half of 2021

<table>
<thead>
<tr>
<th>Country</th>
<th>Market Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>82.7%</td>
</tr>
<tr>
<td>Iceland</td>
<td>55.6%</td>
</tr>
<tr>
<td>Sweden</td>
<td>39.9%</td>
</tr>
<tr>
<td>Finland</td>
<td>28.3%</td>
</tr>
<tr>
<td>Denmark</td>
<td>26.8%</td>
</tr>
<tr>
<td>Germany</td>
<td>22.1%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>19.7%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>18.3%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>18.2%</td>
</tr>
<tr>
<td>Austria</td>
<td>17.2%</td>
</tr>
<tr>
<td>France</td>
<td>15.5%</td>
</tr>
<tr>
<td>Portugal</td>
<td>15.4%</td>
</tr>
<tr>
<td>Belgium</td>
<td>15.3%</td>
</tr>
<tr>
<td>UK</td>
<td>14.9%</td>
</tr>
<tr>
<td>Ireland</td>
<td>13.4%</td>
</tr>
<tr>
<td>China</td>
<td>11%</td>
</tr>
</tbody>
</table>

- U.S. (first half 2021): 2.3%
- Most states: <1%
- California: 10.7%
Wuling Hongguang Mini EV

Best-selling EV in China (by a factor of 3 over Tesla this year)

- $4,500
- Cooperation with GM (44%)
- 1,400 pounds, 75 mile range
- ~$900 in upstream subsidies
- Large registration advantages
2022 MotorTrend Car of the Year

Lucid Air

- First units shipped October 2021
- 520/406 mile range, 933/480 HP dream/base
- High-end EV market has been dominant in the U.S.
Policy Landscape

• California and New York 100% electric (light-duty) by 2035
 • Together 31% of the U.S. market, other states likely to follow

• Structured mostly as a mandate
 • Mix-shifting creates a hidden tax on gasoline and subsidy to electric?

• Role of federal targets and overlaps
 • Will federal targets (e.g. 50% by 2030) change if more states aim for 100% on their own?
Federal Policy History

• U.S. federal fuel economy standards (which incorporate EVs) have been in use for 40 years:
 • 2010: 25.5 MPG
 • 2020: 37 MPG
 • 2025: 54.5 MPG (2016)
 • 2025: 37 MPG (2018)
 • 2025: 43 MPG (2021)

• Most U.S. auto producers came out against the 2018 revision, but it polled well among voters
2016 (Obama EPA) vs 2018 (Trump EPA) economic analyses of 2025 CAFE rules:

- Key changes:
 - Safety and size of used car fleet
 - Technology costs
 - Value of CO₂
Federal Policy Future

Build Back Better Bill

- November 8th version, rapidly evolving
 - $12,500 credit for EVs ($8,000 if not union-made)
- GM and Tesla have both exceeded their cap (200,000 vehicles) under the current subsidy
 - Build Back Better would re-open subsidies for 10 years (5 years for imports)
- Limits
 - $80,000 vehicle price cap
 - $500,000 AGI cap (joint filers, recently reduced from $800,000)
 - Back and forth on refundable provision
The Missing Policy: Scrappage

• Vehicle stock in the U.S. has been stable (about 270 million)
 • Scrappage ≈ sales
• Many reasons to think scrappage is beneficial
 • Air quality
 • Safety
 • Stimulus
 • And now, pace of electrification
Scrap Elasticity

What determines if this (gasoline) vehicle will be scrapped, or repaired and driven another 100,000 miles?

- Answer: mostly, its value
- Elasticity about -0.7 (Jacobsen and Van Benthem, 2015)
- Used and new vehicle prices tend to move together
Because cars last so long, changes in the used fleet are important for policy

Understudied in economics: many policy analyses assume a fixed profile of scrappage

Literature: “Cash-for-clunkers” evaluations (e.g. Mian & Sufi, 2012), “Scrap bounty” evaluations (e.g. Hahn (1995), Alberini, Harrington & McConnell (1998))

Less work on the long term ability of policy to alter turnover
Effect of a $1 Gasoline Price Increase on Used Vehicle Prices

- Light trucks
- Sedans
Link to Scrappage ($1 change in fuel price)

<table>
<thead>
<tr>
<th>Fuel Economy</th>
<th>Used vehicle value</th>
<th>Annual scrap rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 MPG</td>
<td>-$786</td>
<td>+1.6</td>
</tr>
<tr>
<td>20 MPG (average vehicle)</td>
<td>-$227</td>
<td>+0.3</td>
</tr>
<tr>
<td>35 MPG</td>
<td>+$611</td>
<td>-1.5</td>
</tr>
</tbody>
</table>

(For a typical used vehicle valued at $7,000 with scrap rate of 3% per year)

Translates to the elasticity of approximately -0.7
Air Quality Benefits

• Preliminary findings from Jacobsen, Sallee, Shapiro, and van Benthem (2021 working paper)

• Large scale health damages occur due to pollution from older used cars

• Key existing regulations are “tailpipe” standards, mandating specific control equipment on new cars, and "smog check," removing gross polluters

• We document the remarkable effectiveness of new-vehicle tailpipe standards and show how further dramatic gains are possible using scrappage policy
Emissions Across Vintages: Nitrogen Oxides

- First regulated in 1972
- Log scale
- Other (local) air pollutants similar reductions
• Graphs hold the VIN stub fixed (year, make, model, trim)

• Age and odometer both increase local air pollutants (but not CO₂)
Results

• Compounding effects from vintage and age create large changes in health damage:

 • New $200/year

 • Age 20 $2000/year

• Typical values of 15-20 year old vehicles mean that relatively small fees can have a large influence on scrappage

 • Scrap/repair decisions take account of cumulated future fees, not just one year

• Scrap effects earlier in the age distribution (around 10 years) also turn out to be economically important
Influencing Scrappage

- Pulling cars into retirement: scrap subsidy
 - Pros: opt-in, possibility that subsidy goes to lower-income groups
 - Cons: most payments don't create additional scrappage, very expensive program, decreases average cost of driving (worsens congestion, other externalities)

- Pushing cars into retirement: registration fees
 - Pros: increases the average cost of driving
 - Cons: increases the average cost of driving
Scrap Policy

• Scrappage is part of an economically efficient strategy to transform the fleet
 • It is also very difficult to incentivize

• Equity
 • Large EV subsidies may go mostly to high-income groups (new car buyers, multi-car households)
 • Flatter registration fees would fall more on low-income groups
 • There is also a significant urban/rural divide on vehicle age
The Other Two Revolutions

Sharing

Customer spending on ridesharing apps shows signs of a slow return

Weekly spending in the US on each app, relative to Uber's peak (%)

- Slow rebound from Covid due to reduction in capital inflows? Perhaps also policies on wages and benefits?
The Other Two Revolutions

Sharing

• Ride-sharing will likely capture the entire taxi market, and then some

• I'm not as optimistic as many about how big the "and then some" will be

 • Children, safety, cleanliness, shopping trips

 • Cost: 3,500 mile break-even, 5th percentile (McKinsey 2018)

 • Psychology, pride of ownership
The Other Two Revolutions

Automation

- Promises to transform
 - Safety
 - Convenience
- Tesla Autopilot (3 billion miles)
- Waymo (20 million miles)
The Other Two Revolutions

Automation

• When automation comes, I think it will change transportation and society more than anything else I've discussed

• Reduced (time) cost of travel

• Urban form: parking, commutes, real estate

• Health and safety, congestion, law enforcement

• Spatial economic growth, urban infrastructure

• Caveat: Trust? Driverless elevator technology took 50 years to capture the market
Alternative Transportation

• Buses and rail

 • Some technological improvements (e.g. real-time tracking, bus accident safety), but appears quite limited relative to cars

• Vast majority of U.S. population chooses to move by private car

 • New technologies seem poised to increase the preference for cars over bus and rail

 • Simultaneous public transport investment could slow the shift toward cars

• E-Bikes: incredibly rapid technological change, as with cars

• Distant future: something altogether new and transformative?
Local Policy

- Los Angeles, especially aggressive charging station subsidies
 - January 2021: 11,000 public charging stations (226 high speed) and 63,000 EVs (nearly 1% of vehicles)
 - High targets for EV sales (how will it meet them?)
- Electricity
 - San Diego electricity prices are quite high (3-4x national average)
 - Solution: subsidize EV owners' electricity
Local Policy

- Local EV tech hub?
 - Rivian (based in Irvine) startup with 800 HP electric pickup, market cap greater than that of General Motors
 - Large-scale lithium mining as close as the Imperial Valley
 - Nickel, cobalt, and manganese from the deep sea may be landed in San Diego