MATHEMATICAL AND BASIC CONCEPTS

Δx , $\Delta f(x)$	change in value of x , change in value of $f(x)$
f'(x), f''(x)	first, second derivative of single-variable function $f(x)$
$\partial f(x_1,,x_n)/\partial x_i$ or $f_i(x_1,,x_n)$	partial derivatives of multivariate function $f(x_1,,x_n)$
$arepsilon_{y,x}$ or $m{\mathcal{E}}_{y,x}$	elasticity of y with respect to x
α	generic parameter in an optimization problem
$X^*(\alpha), X_1^*(\alpha), \ldots, X_n^*(\alpha)$	solutions function(s) to a general optimization problem
$\phi(lpha)$	optimal value function for a general optimization problem
λ	Lagrange multiplier
P	generic price for supply-demand diagram
Q	generic quantity for supply-demand diagram
S, D	supply and demand for supply-demand diagram

CONSUMPTION AND DEMAND

x_i	consumption level of commodity i
(x_1,\ldots,x_n)	consumption bundle
≽, ≻, ~	weak preference, strict preference and indifference
$U(x_1,\ldots,x_n)$	utility function
$MU_{i}(x_{1},,x_{n})$ or $U_{i}(x_{1},,x_{n})$	marginal utility of commodity i
$MRS_{ij}(x_1,,x_n)$	marginal rate of substitution between commodities \emph{i} and \emph{j}
$ ho_i$	price of commodity i
I	consumer's income
$x_i^*(p_1,,p_n,I)$	ordinary ("Marshallian") demand function
$V(p_1,\ldots,p_n,I)$	indirect utility function
$x_i^c(p_1,\ldots,p_n,\overline{u})$	compensated ("Hicksian") demand function
$E(p_1,\ldots,p_n,\overline{u})$	expenditure function
EV, CV	equivalent variation, compensating variation
L_{e}	consumer's leisure
L _a	consumer's labor supply

 I_0 consumer's nonlabor income

w wage rate

i or *r* interest rate

 c_t consumption in period t

 M_t income in period t

 s_t saving in period t

PRODUCTION AND COST

L labor input

K capital input

q or Q output

f(L,K) or F(L,K) production function

 $MP_{l}(L,K)$, $MP_{k}(L,K)$ marginal product of labor, marginal product of capital

 $AP_{L}(L,K)$, $AP_{K}(L,K)$ average product of labor, average product of capital

MRTS(L,K) marginal rate of technical substitution

w wage rate

r rental rate on capital

 $c(\cdot)$ or $C(\cdot)$ generic cost function

LTC(q, w, r) long run total cost function

LMC(q, w, r) long run marginal cost function

LAC(q, w, r) long run average cost function

K fixed capital

STC(q, w, r, K) short run total cost function

 $SFC = r \cdot K$ short run fixed cost

 $SVC(q, w, \bar{K})$ short run variable cost function

 $SMC(q, w, \bar{K})$ short run marginal cost function

SATC(q, w, r, K) short run average total cost function

 $SAVC(q, w, \bar{K})$ short run average variable cost function

 $SAFC = r \cdot \overline{K}/q$ short run average fixed cost

PROFIT MAXIMIZATION AND SUPPLY

 s^{LR} long run individual commodity supply s^{SR} short run individual commodity supply q^* generic optimal quantity supplied $MVP_L = P \cdot MP_L(L,K)$ value of the marginal product of labor $MVP_K = P \cdot MP_K(L,K)$ value of the marginal product of capital $R = P \cdot q$ revenue π profit

MARKETS AND WELFARE ANALYSIS

t, s tax rate, subsidy rate price to consumer under a tax, price to firm under a tax p_c, p_f g_i, G individual's provision, total provision of a public good E_i total endowment of commodity *i* for Edgeworth Box \mathbf{e}_{\cdot}^{j} consumer j's endowment of commodity i consumer j's final consumption of commodity i CS, PS, SS consumer surplus, producer surplus, social surplus DWL deadweight loss PMC, SMC private marginal cost, social marginal cost PMB, SMB private marginal benefit, social marginal benefit

GAME THEORY

S, S_i, S_{-i}	strategy profile, strategy profile of player <i>i</i> , of other players
S _i , S	player i's strategy space, space of strategy profiles
<i>U</i> _i	player i's payoff function
UD_i	player i's undominated strategies
R	rationalizable strategy profiles